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MOTION OF SAND GRAINS|/BY WIND

Ryoma Kawamura¥

1. Introduction’

~
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If we go out to a beach on a windy day, we can see thaﬁ the
surface sand ripples under the wind. A ftraveller in a desert
knows how annoying a sandstorm can be. Although our country
(Japan) does not have any desert, there are a lot of places
where invasion and erosicon by sand can cause great damage and for
this reason these places devote much effort in preventing it
from happening. Consequently, to study the motion of sand in a
wind is not only an interesting 'academic problem, but it would
also provide the needed knowledge in establishing erosion control.
In the following sectlons, the results of present research on
this problem will be described.

2. Sand Movement Disturbed by a Wind.

Wind does not always blow in a regular pattern. It changes
its direction as well as its spéed. Such a wind -pattern is
called turbulence, and 1t is different from what we commonly
call a wind. 'To study sand movement, we must first know how a
sand particle moves around under the influence of furbulence,

An object as small as a sand particle, when 1t moves in the air,

¥ Research Fellow, Institute of Science and Technology.
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due to the small Reynolds number in
such a case, has a resistance pro-
portional to its speed according to
Stokes' law. Although a sand parti-
‘ﬁ' cle generally has a very irregular
.. shape, it can be approximated to a
"d%}x sphere with the equivalent volume.
The motion of thls sphere in the

horizontal direction (the x-direction)

can be worked out as follows:

Ripple-Formation on the sur-
face of a sand dune.

mz =3z ud(u—=) (1)
where m: the mass of the sand par-
ticle; u: the coefficient of viscosity of the air; d: the dia-
meter of the sand particle, and u: the x-component of the air
velocity. If we assume the horizontal speed of the turbulence
in the simple form of u =10U + uosin wt, Equation (1) can be
solved with respect to an appropriately chosen origin, namely

z=U(l+Ae-B)-+u, Bsin(ot—3)

where

and A is a constant.

If we compare the second term of the solution with the air
oscillation, we see that the sand particle oscillates with the
air, and its amplitude is B times the air oscillation with a
phase retardation of 8. As we shall see later, when a sand paf-
ticle moves around in turbulence, it takes about 0.2 sec for it
to join the turbulence. Thus, this time delay ought to be taken
into account to begin with, If w =2 7 X 5 sec _1, then the re-
lation between the diameter of the particle, d, and the ampli-
tude, B, can be shown, as in Table 1; but u = 1.87 X lO—Lt gm/
(cm*sec) and the density of the sand particle & = 2.65 gm/0m3.

From the Table, one can see that for diameters smaller than 0.1 mm,



there is the possibility for thé sand particle to be captured
by the turbulence, while for diameters larger than 0.25 mm, the
£w§§p§\particle would not be greatly influenced by turbulence. A
small particle takes a long time to fall down to the ground, be-
cause aglr viscosity slows down 1ts velocity. Consequently, when
one conaiders sand partlcles with diameters smaller than 0.1 mm,
the problem should be treated by the alr diffusion coefficient,
as in the case of temperature and water vapor. On the other
hand, sand particles with diameters greater than 0.25 mm, not
greatly influenced by turbulence, move in simple projectile

motions.
TABLE 1. :
e 3. Types of Sand Motions
3 drmm I B _
i 0.05 2 0.850 . .
] 10| o3 | Sand motions due to wind are of 3 types:
E l°i5} 0. 064 suspension, saltation, and surface creep. This
i 050 | 0.016
ﬁ. 100! o.o;0 | Tact was first observed by Bagnold and Chepil.

The first kind of motion ——Lname;y,?éyspénsioﬁ - ié
malnly for minute particles with diameters around 0.1 - 0.05 mm.
The particles can be carried for a long distance, and in an or-
dinary wind they reach an altitude of several meters. This
fact conflrms what we have described in the previous section.
The second kind of moticon, saltation motion, is the jumping up-
and-down motion by sand particles, as shown in Figure 1. This
is mainly by particles with diameters of 0.2 - 0.3 c¢m. In thié
motion, sand particles jump up drawing a flying curve, then fall
down to the ground to collide but bounce back up agaln, or to
be caught by the sand surface. This motion is restricted, 1tself,
within a height of 2-20 cm from the sand surface, and thus the
flying motilon distance is also much shorter than
that covered by suspension motlion. The third kind

of motion, namely surface creep, is for sand parti-

cles gliding along the surface of the ground, and

it is mainly for larger particles. If one investi-

Figure 1.



gates the sizes of sand particles on a sand dune where sand
shifts arourld intensely and dunes come and go guickly, one finds
the distribution of the sizes of sand-particles 1s always quite
uniform - that is, the majJority of the particles are in the

range of 0.2 ~ 0.3 mm, and very few are smaller than 0.05 mm or
larger than 0.5 mm. Such a distribution in fact characterizes
a sand dune. And in a sand dune, one may safely assume that
diameters of particles are all about 0.25 mm. Consequently, in
a sand dune one does not consider susbension motion at all, but

limits himself to the saltation motion.

4, Wind Intensity in Moving Sand Particles.

According to Chepil's experiments, when a wind reaches a.
certaln speed, sand particles start to roll on the surface of a
sand dune and become accelerated. After the accelerated sand
partiecles collide with bumps on the surface, they begin to jump
up to start saltation motion. In this case, the relaticnship
between the wind speed and the dlameter of a sand particle is
very similar to the situation when a rilver carries along chunks

of mud.

There have been a lot of experiments, since ancient times,
to observe the motion of mud chunks in a river. The experimental
results are arranged, with respect to the wind speeds of certailn
values, and wind speeds of 1nterest are limited mainly to those
close to the ground surface. The height z and the wind speed U
have the following relationship:

o p=&mvgmmnm,méymﬂ (2]
whefe TD: shearifiorce which moves sand particles, p: density
of the air, and k: the degree of coarseness of the sand surface.
The coarseness k of the surface varies from place to place, but
on a flat surface, it 1s about equivalent t0 the-dlameters of
particles, d. The quantity @i;is called the frictional velocity,
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‘vil, [

because it has the dimension of a velocilty, but really @l is a
parameter to be fixed by the experiment of the moment when sand
particles start to move. Figure 2 is due to Chepil, and ‘wsdin.
Boh- T  pa T the figure is the frictional velocity
, obtained when sand particles started

sos ,
M tormove. According to the figure,
within the limit of od>0.1, jw| 1s pro-

portional to “ﬁﬁh ‘However, in many

sol-y

ol_

other experiments, the relationship

between wws| and d is shown by the fol-

g,

dmmxe ‘ ~ lowing formula:
i

Figu;é 2. - R ' 1/ / 7 (3)]

where o: the den31ty of sand parti-

¢les and A: constant. This empirical formuls in fact can be
thecretically worked out as follows.: In the vicinify of the
surface, there are N sand particles in a unit volume, then the
volume of a sand partlcle is N- ﬂd3/6 fIf we call this volume A,
then N = 6A/ﬂd3. The total number of sand particles in a unit
surface of the sand which i1s being directly bombarded by the wind

is called n; then

On the c¢ther hand, the shear force on a unit surface is ﬁ;ﬁ, and
this force is equal to the reslstance of n particles on a bump
of the sand surface. Conseguently, the resistance D applied on
orie sand particle is shown in average as follows:

_ =_"33*——p(w)duJ :
Now 1f the static friction angle is ‘ﬁ,rthenﬁjbgmgggq;@;on_to_
move a particle is D> mg tan}?? If‘uﬁ is the friction veloc1t§1
‘when 51l the sand parﬁlclesABfug_gﬁ;fabe\aré]mOVIng in a statis_1

\tical 'sénse, then|

Sl e

With m = ﬂ0d3/6, one finds

1

vus=r ¥ - (60T (tan e0) T /g ) (5



In taking into account the air buoyancy, one gets Formula (3).
Actually, «%30) and i+0.6; These values gggfbe inserted in (4) but
they will yield|a value of " which is nearly 10 times larger

than the experimental value., This is due to the fact that this
formula is obtained with the assumption as givén in (4) that

all particles move around in the same manner. However, in real—|
:ipyf many particles are so small that they need a far smaller
value of wa| to move them. Consequently, it 1s natural that the
theoretical value of x| from (4) is much larger than the real
value. There is another theoretleal approach in which it 1is
assumed that walis entirely due to the force which the wind exerts
onn the sand surface. However, we belilieve this approach does not
have any theoretical justification. In Figure 2, in the region

of ¢d<0.1 and for a smaller 4, ﬂf{increases. According to Chepill's
explanation, when particles are in fine granules, the surface

has a small coarseness and, consequently, the situation is equl-
valent to the case of smooth ground, on which a wind blows.

Hence, no turbulence can reach the vicinity of the surface, but

a low-layer of & gradient flow 1is formed and sand particles can
bury themseélves in this layer. Consequently, for the same %J va-
lue, the wind velocity at the sand surface - namely, at z=d — be-|
comes smaller, for a smaller d. Since the resistance which moves
sand particles is proportional to the surface wind velocity, for

a smaller d one needs a larger ~4. Although =/ can be worked out
theoretically for d in this region, the effort may be omitted ‘
here, because fine granular sand particles are not a part of the

problem related to the motion of a sand dune.

5. Stationary Sand Flows

In the previous section, we have described the condition ZEQE
with which sand particles can be moved by the resistance applied
£o the sand, and the resistance is determined by the wind velo-
city in the vicinity of fthe sand, namely, in the region of z=d.

6



If we call this velocity V, then when V reaches a ceftain value,
unstable sand particles on the surface x will start to roll, and
then be accelerated by the wind. When the accelerated particles
hit a bump on the surface, they jump up into the air. The par-
ticles will come back down due to the gravity. However, if
particles on the way down do not lose too much energy to the
wind, their impact to the ground can create more unstable sand
particles. These unstable particles can again be activated by
the wind. The surface wind veloeiﬁy‘v can move all the unstable
particles, and thus the amount of flying sand partlicles will in-
crease, but since flying sand particles have to obtain their mo-
menta from the wind, the wind eventually wilil be siowed down too.
When V goes down below the capaé¢ity to move x sand particles, the
flyihg_sand particles will all go down to the ground and the
amount will decline. Thus, the wind veloecity and the amount of
flying| sand regulate each other to produce a stationary state,

A stationdry sand flow indicates that the surface wind veiocity
is always strong -enough fo move sand particles. When the wind
velocity is at a certain value, it creates the largest amount of
sand particles {(called the saturated amount of sand particles).
The horlzontal shear force of the air is equal to the sum of

the shear gstress Ta due to the moving sand particles and the
Reynolds!' stress Ty due to the turbulence: namely, T=TS+TW. in
the vicinity of the ground surface, cne can ﬁegﬁect the horilzon-
tal pressure gradient, and therefore 1'is constant in the verti-
cal direction and equalils the shear stress T applied to fhe moving
sand particles. When the amount of flying sand increases, 80
does Tge However, since T, ¢an never exceed Tos the condition
for saturation is therefore TS=TO. At a source of rescnakly dry
sand, the amount of flying sand is always at the saturation point
except at the periphery of the source.



6. The Motion of Flying Sand in the Alr.

As:mentionéd before, for particles of dlameters around 0.25nmn,
;one\?doés not have to consider turbulence. Although the wind velo-
city V varies in the vertical direction, yet since we cannot han-
dle this wvarlation, the wind velocity V has to be assumed as con-
stant. If the wind direction 1s taken as the x-direction, and
the vertleal dlrection is the w-directlon, then the equations of
motion can be written as follows, assuming that the resistance
force 1s proportional to the velocity: _

o mEma(V-3) | (5)]

(e is a constant)

(6)}

Now at t=0; x=0, z=0, k=1, and ¢=w,, and for a short jumping dis-

mz = -mg-oz |

tance, uq and‘wl can be assumed as very small., Then
#=ﬂyh%{V—%0& - o
:'r?ﬁuzu,-l-('l’—#;)ﬂt (7) \
. . zs(w;——,g—t) 4 1

! 2=‘w=w‘_..ﬂt}'

(8)]

where B=a/m. Consequently, the falling velocities, Uy and Wy,
Jumping time T, Jjumping distance L and jumpiné height h of a sand
particle can be found %o be

ﬂﬂ Was' We= — Wy, ngﬁw—r‘

PR
e, negt (9]
The resistance of the particle is, according to Stokes' law,

found from a=3wud, but since the Reynolds number 10 - 50|obtained]
by comparing with the experimental results, o=2X3rud.

7. Distribution of Flying Sand in the Vertical Direction

In staticnary gand flow, the number of sand particles
Jumping off the ground must be egual to the number of sand par-
ticles falling down to the ground. This number is called ..

8



According to the experiments by Bagnold and Chepil, since most of
the sand particles are jumping up vertically, in (9), uy can be
neglected, as compared to Wl and Uy . Sinece the situation at the
sand surface 1s totally random, the velocltyawlAq%stribEtion of‘
Jumping particles ﬁﬂlowg{the Maxwell distribution. However, the
probability to move from wl<0 to wlio is zero. If g(w } is the

probabllity g(w )dw for a partlcle_ﬁd fall at a ve1001ty w1 betweenl

Jiy ,—aqa:] T '
ity

.ﬂ‘w
Y.

where WO is the average value of w;. From (9), one can replace

Wy by then ‘the pPObabllltEQLw(h)dh for a particle to fall~EE€EEE§ﬂw4;

u_g-_q,_— —

]h and_btdh fsT o

Lo e T -
3 1 h

A D T T R
> "f_l“h'"r:./lg r/—h:ex;[ p ho ‘(lOﬂ

where ho is the average of h. Next, if n(z)dz 1s the number of
sand particles at the height in the range between z and z+dz and
the average x-component of the velocity is u at this height,
then in a unit time, the number of sand particles flow through
this height is g(z) dz which can be shown as

' SRR g(Bde=m-n(DEDdz: | f(iiy
Now n and 1 can be found as follows. If particles stay 1n the
range of z and z+dz for the duration of dt, then it is dz/w.
From (7) and (8), w%%Zg(h—z) and consequently,

‘dz

A= T sy

T

Since it takes the same amount of time for a particle to fall
down as it flies up, the time for a particle to finish one jump
is 2 dt. During this time, a total of nodt makes the jumps.

Consegquentliy, o .o ,
niz)dz= _(:’_::;f(h) dh-2dt - 3 (“1"2')‘|
: 1 k '
d: /T2 j exI;'| "k
SWy - 3 dh
2 v ¥ ,gk_, '/h (h -2)

Now from {7) and (8B), the x-component of the particle-velocity /503
at z g
> =%¥{vﬁﬁ##ﬁm53ﬂ




+ . ‘
The (=) sign shows the direction of Jumping up or falling down,
respectively. Consequently, in the up—and down motion, the aver-

_age value of u 1s independent of z but depends on’ h alone, that 1z ] R

/if we call this _average ve1001t§ﬂu(h), then| f“¥£;;;:";ﬂ_m _*“——?:7?
) e =By | '
Finally,
PR o I Bty |
.qu)—j'm-nufch)qiw o ol (13)

=_21:111',- —Egﬁexp[ - e}__ _f_.]

This shows that z and 1o)q(z) have a linear relatlonshlp.
'igure 3 shows the experimental values obtalned by Chepilljand

o oaml %
ey oD oL onelkees tHat the theoretical formild. genetzlly
‘Fine Sandy Loim satisfies the curve. The above formula was
4 rr— —r— . .
‘;L- : obtained by assuming Wy andgthereforeqh are

negligible, and V is assumed to be at a con-
stant. For a larger h, one needs a large V
and thereforeJthe average velccity of sand

particles must be also large. Consequently,

| — PN
Jmuv PR W ow

| | #g(mg.em*sect v for a large z value, the amount of sand parti-
Figure 3. cles ought to be larger than that obtained
(in asig%:?lthmlc from the above formula. This is why in the

experimental curve of Figure 3, the curve be-
comes a stralght line for large z-values.

8. Relationship Between Wind Intensity and the Amount of Flying
Sand

We divide the air space iInto 2 layers. The top layer has
no influence on the flying sand, while in the bottom layer the
effect on the shear force of turbulence is assumed to be absolutely
negliligible. This lower layer of alr space is called the layer of
flying sand. In the flying sand layer, the wind loses its momen- -
tum to sand. This means that flylng sand particles are like -
grass in a grassland bendlng to a wind and thus this layer can

3130 be understood as a surface with coarseness. The coarseness,

10



of course, depends on the thickness hS of the flying sand layer.

The velocity dis%fibution of the layer can be shown as (2)

‘:\? Sy O

oG -0 U =55z, ]og_igi,
A B

where ¢ is a constant, o

Consequently, immediately outside the layer - namely, when -
z=hs - thelwind velocity is proportional to Qﬂ. Since the shear
stress is owd, work done in a unit time outslide the layer is
thus proporticonal to éﬁﬁ. This work is provided to the layer in
order to inerease the kinetlec energy of the flylng sand. Now
we bring average values 1into the problem, taking the average vl
values of Jjumping-up velocity and the horizontal component of

the falling-down velocity of a sand particle as Wy and ué,‘res-

pectively. Also we ignhore the error in assuming that the aver-~
age of the sguare is equal to the square of the average. Then

the above working relatlionship becomes
KNS rmout=tent; [ k 1s a constant | (14}
Now since the‘momentum inerease in one Jjump is mu, (where Uy is |
neglected because it is a small value) and in a state of satura-
tion the shear stress applied to the sand surface is equilvalent
to the momentum change of a sand particle,] |
Lo L mmm=eed | ' (15) ]
And if one neglects uqy in (97,
Sy i | a9l

Consequently, friom these 3 equations (14), (15) and (16), one |

lcan rinafu,; W, @Md 6, and they are]

o = Zhns 101m T v,
. . LU= kﬂ*r k{2 kﬁv T%y .

(17

.1 &
o= o Tt

Hence, the average values of a jumping distance and the height,

L and h, aré Trom ()7 as Tollows! |
e et e | (189
‘L:JZA" BV Tt h'—‘*2—'*;97_v@"1n J (18)‘1

Next, we consilder an infinite vertical plane, perpendicular to

11



the direction of the wind. The amount of sand particles passing
through a unit area on this plane in a unit time 1s Q and

Q=mn,L = LﬁV -——--'L*’ E (19) I

According to the experiments by Bagnold, a sand particle of a
diameter around 0.25 mm has V $ 250 cm/sec and Q # 1.5e%) Other
constants can alsco be shown to‘be m=2.17X10-5g, B=4.00 sec"l,'and
p=1.25X1O_3g/cm3. If one inserts these values into (17), (18)

and (19), then

k=1.53, 1:=3.06 2. w;=1.60 %,
n,=18.8144 L=4.092 g, h=1.12+¢,%g. (20) ’

TABLE 2. Thus for each vel value, the other
duantities can also be,sﬁown as in

it

cmt lem' | e L:'.", L ‘ vl Q .
st gacd! oo gomeeml | maple 2.] Consequently, the amount

i i om™ cm jem | secd
20 | 62l 20 @ ‘we | 1.5 04s'am5, of flying sand Q 1s generally pro-
124 60 . 762, 7.6118 012 | portional to the third power of the

60 | 183 90 © 1180 | 17.3 , 4.11: 0.414 Tl
8 246 | 120 ; 1500 330:5&h oest | Wind veloeity (v¥*’) for a certaln given

‘height. It is also shown in the
formula that a weak wind for a longer duraticn moves the sand
more effectively than a strong wind blowing for a shorter period

of €ime.

~

9. Surface Creep

We consilder a jumping motion in which sand.particles collide
onto the sand surface and bounce up. If the x- and z-~components
of the velocity before and after the collision are (uz, Wy ) and
(u W ), ?espectlvely, then a: sand partlcle 'Wwlll receive in the
X- dlrectlon a force of m(u —u ) and 1n the z- leeCthH - a force
of m(wz—wl). Consequently, when some condition is satisfiled in
the coliision, the particle will slide,imaking a "surface creep"

motion: (g~ )T — 00+ mgltan ¢ |

wherel¢\is the static frictional angle] of the sand particle. We

12



can rewrite the condition as follows:

e — (w20 |
From (17) of the previous section, one knows that the left
side of the condltion on the average is proportionél to iyh Ir
in a unit time and in a unit volume, the number of collisions is
calied N, s then the above condition for n, collisions in a unit
time and 1n a unit volume 1= proportional to noﬁ;L Next, if a
gsand particle slides on for a distance of LO, i1n a collision
the‘particle will do a work Of{;b X mgqt?QYWj?mtq the gag@lsg;faqgﬂ
and this amount of work must be porportional to the loss of the
kinetic energy of the particle. Taking the proportional constant
asiCh, one gets| _ L
Lomg tane? =yl )+ (=] |
As we did before, the right side 1is proportional to-W?ﬂ'and thé
average value of LO i1s proportional to @Hﬂ. Consequently, if the
amount of sand particles doing surface creep on a unit area is
called Q,, then '

) Qa""m‘i‘*??o- Tw
Cg

By use of (17) and replacing N s

T @=C-2v3 € is a constant. | ~(2n)

By comparing (19) and (21), one gets QC/Q=constant. Bagnold

made some experiments in deserts, and he found that for the aver-
age diameter of 0.25 mm, the ratio QC/Q is i1ndependent of the
wind veloecity but is always about 0.25, The observation agrees

with the above theory.

10. Appearance of Sand-Ripples

If we go to a beach on a very windy day, we can see sand
waves with wavelengths of several cm, moving slowly along with
the wind. Such sand waves are called sand—rippies. -Up-ﬁo the
present time, various observations and researches have been made

13



on these sand-ripples. Exner tried to explain the formation of
sand-ripples as due to some turbulence, but his theory fails to
produce the wavelength of a sand-ripple, and it also does not
show the relationship between the wind intensity and the ripple
formation., Since ordinary sand particles, as described above,
are not greatly influenced by turbulence, due to this point alone,
one can argue that Exner's approach is questioné@;@j According
to Chepil's experiments, for sand partlcles with diameters either
smaller than 0,05 mm or larger than 0.7 mm, no ripple can be
formed by a wind with intensitlies of any magnitude. Also Bagnold
reported a strong relationship existing between the wavelength

of a sand-ripple and the wind infensity. Based on all thése
polnts, 1t is appropriate to assume that a gand-ripple formation
is theoretically related to the problem of the saltatlon motiocn
of sand particles. We can study the stabllity problem on the
sand-surface, based-on this viewpoint. We first assume that a
wind is blowing over a flat surface with a uniform velocity.

The air viscosity 1s neglected. If the wind recedves a velocity
disruption of the amount of u and w in the x and z-direction,
respectively, and the air pressure is taken as p, then the equa-
tion of motion and edquation of continuity can be shown as

eyl e
- 8t -x p ox

fw fw_ 1 &p

"a't—'*V—a‘z_f e oz

fu |, fw _ ’ T
i i

Now we express the unevenness of the sand-surface by the helght

of the sand, y, then the slope
ey _qw .
E73 (’V‘).-: : }

With u=uoexﬂ(0t+ivx) and w;&;éEE(dt+iﬁk), one gets the'fBIibeﬁé]

solutions:
u=ugexplot+ive—rz), \

4p = fugexy gt -+ iy —¥2] ‘ _
Sy 1 | . ( 22 )—!

y=—- Texp[at'+w:r]

14



The time variation of the sand helght (y) at a certain spot is
proportional to the difference between the number of sand par-
ticles falling down on this spot and the number of sand particles
jumping off the spot. Since most of the sand particles take a
similar path in a saltation moticon, particles jumping off from
the spot where x lies between £ and £+df willl fall in x and x+dx.
Consequently, .

- Jp=AIN {1 N (x) daat, |
where A is a positive constant, and N is the number of particles
jumping off from a unit surface in a unit time., By rearranging

the above relation, one gets
co S R O ) ! : (23)

If sand particles, due to the wind dusturbance, jump up with a
velocity of Wy s and if one assumes that a strong wind velocity
wlll provlide a strong jumping velocity W then‘
Wy wb tau,.q 3 2 is a positive constant,
where the secohd‘order term is neglected. 'M% is the jumping
velocity when no disturbance is present. One can find the jump-
ing distance from (9) as
- P—— (24
where b 1s a posltive constant, and L, is the distance when no
disturbance is present. Consequently,
L(me-t LEta =arar -G

and therefore

R G S (25)]
From (22), (24), and (25),
et L] | 26y

Now assuming that the total number of the particles involved in
the saltation motion is constant, namely N{&) = N(x) = No’ from
(227, (23) and (26) one gets '

,, o= —iANrexs—wla) | e
(27)ﬂls the, equation which determlnes the stability of a sand

¥FTranslator's Note: Mistakenly printed as (2 } in the
original foreign text. ' 15



surface, When the real part of o is positive, the situation is
unstable, and when it 1s negative the situation is stable. If o
one sets

g=g.+ig are real numbers)

1 5 (cl and o
then (27) becomes

2

gy= —-AbVNov'-*sin DL. : ’
7 { co= AbVN st cos L, | ‘ (2 8)] \
Conseguently, Ul>® indicates the region of instability, namely
(2m+1)n>vLo>2mw (m positive integer). In this region, the most

unstable point of o4 is at

‘ 2wam Ly | (29) |
The larger is m, the larger the wvalue of 0q will become, and
therefore,a greater instablility appears. Then the question re-
maing of when and what value of m creates a sand-ripple. The
wavelength of a sand-ripple 1s obtalned as the rootsfﬁéubf'fé9§,]

namely vLO=Bm, or

- Itlis known from (18) that L, 1s proportional £ 0wt} flks is also
x Qo ] - r :
k proportlonal to‘v*2 and consequently'FlgUfe 4 is due to Bagnold fPOﬁW‘

( his experiments and: 1t shows the experl—_

mental relationship betwedn X and 1*f
One sees that’ the theory agrees qu1te
well Wlth theé experlmental-data. Actu~
ally, a sand ripple appears.when m=o,

1 1 \ A sand-ripple appears when vL_ satis-
o 1000 2000 3000 0 >
vt - emys.fies (29), and when that happens, )
Fiéﬁre i ox0, that is, the propagation speed of

the wave 18 close to zero, This 1is due
to the fact that we have so far only considered the =zaltation
part of the motion. In reality, the surface creep motlon will
push the sané:-,r'ipp;u:e-j_'slowly forward.. -

16



In the above theoretical explanation, many assumptions and
omissions have been made., Conseguently, the theory is far from
complete. We hope to be able to fill in fhese imperfections in
a future study.

11, Peculiarities in the Motion of Sand and a Sand-Hill

The contents of this section is not original research of
the present auvthor. However, since there are some interesting
peculiarities in the movement of sand, we want to ineclude 1t in
thils article, along with some simple explanation of the problem
of a sand dune.

We have noted above that sand can be sorted out in sizes
by a wind. In an ordinary sand source, all knids of sizes are
usually present. Suppose we mix particles of different sizes
artificizally intc some sand and blow a wind over to observe the
distribution of particle sizes afterwards, both in the wind and
on the ground. We find the distribution on the ground is differ-
ent, whether we have mixed the sand with alot of .fine] granules or
a lot of larger partleles, but in the wind the distribution does
not change due to the artificial mixing. This 1s due to the
sorting effect of the wind, and the unchangable distribution of
sand particles | in the wind is the same distribution one may
find in a2 sand dune. Fine granules are very difficult to be
picked up by a wind, as shown in Figure 2, because they are pro-
tected by large particles. On the other hand, large particles
are obviously difficult to be blown up by a wind. In effect,
only particles with diameters around 0.25 mm can easily be picked
up by a wind. Consequently, around a sand dune, one finds the
average diameter of sand parficles 1s around this value and the
distribution has a quite définite pattern. Now we should con-
sider the aforementioned saturated amount of sand particles; in

other words, we should consider how for a given wind intensity,
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the condition of a sand surface affects the saturated amount.
If the ground has accumulated a lot of large sand particles or
small rocks, sand particles, after they collide with the ground,
bounce back more strongly, and consequently, they can reach a
higher altitude with a larger vvelocity. Hence, for the same
intensity of wind, a larger amount of sand particles will be
blown up. This situation is similar to the case of a solid
ground. Contrafy to this, in the case of a river surface, the
amount of flying sand i1s zero because sand particles will all
sink to the bottom of the river.: In a large:sand source, such
as % desert, there are a large amount
" of sand particles with large dlame-
ters, and 1n such a place smadler
sand particles do not accumulate
but they are carried|away by winds.
Consequently, only c¢oarse sand par-

Figure 5. ficles are eventually left behind.
Sand particles carried away by winds will accumulate at some
“sand!dune area. This is one of the reasons a sand dune is formed.

Next, a few simple explanatlons are needed for the sSand dune
problem. A complete reason for sand dune formation is not yet
attalnabls, as far as the present author knows. The cross-jsection
of a sand dune, formed naturally, can be shown in Figure 5. The
anglé of stability of sand is found to be at 8-15° for an upward /506
wind and it is almost 30° for a downwérd wind. In observing
the distribution of sand particles, one finds that particles at
the foot of a downward hill are coarser than those at the upward
hill. This is due to the fact that smaller particles, which can
perform saltation motiony roll upwards but do not fall down to
the foot of a hill to remain static, while the coarser particles
which can perform only surface-creep motions accumulate slowly
at the foot of a hill. Exner has made some simple calculation
on the movement of sand dunes, and we want to introduce it here.

18



Suppose a sand dune moves a distance of ‘Al in a time At in the di—\f“
rection of the downward wind, preserving 1ts ofzgghéi”éﬁé?e (Fig;
ure 6), If M is the amount of sand being moved by the wind in
. ., a unit area in a unit time and pg| is the den-
o \ sity of the sand dune (not the density of a
sand particle), and h is the height of the

Figure 6.  dune, then

Higt=Mipah |
where it has been assumed that the upward angle is smaller. The
magnitude of pS/has been found elsewhere to be 1,22 gm/omS. This
theory due to Exner shows that the speed of sand dune movement is
proportional to M, but inversely proportional to the height of
the dune. Consequently, a higher sand dune moves more slowly.
To prevent sand intrusion, one of the methods is to make the arti-
filcial sand dune high. The abdve theoretical formulg indeed
agrees wéll with reality. For a sand dune’ about BOJmétefs\-
high, the moving distance in one year 1is about 10 m, although
it varies scmehow, depending on the intensities of the wind blow-
ing during the year.

In the region of sand dunes, there are all kindsg of sand~
ripples with wavelengths ranging from small to as large as 100 m.
There are also many sand dunes which fit into the aforementioned
standard corss-section, so-called Barchan. However, owing to
space limitations, this discussion will be omitted in thls arti-
cle,
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